Substrate Promotes Productive Gas Binding in the α-Ketoglutarate-Dependent Oxygenase FIH
نویسندگان
چکیده
منابع مشابه
α-Ketoglutarate Promotes Pancreatic Progenitor-Like Cell Proliferation.
A major source of β cell generation is pancreatic progenitor-like cell differentiation. Multiple studies have confirmed that stem cell metabolism plays important roles in self-renewal and proliferation. In the absence of glucose, glutamine provides the energy for cell division and growth. Furthermore, α-ketoglutarate (αKG), a precursor for glutamine synthesis, is sufficient for enabling glutami...
متن کاملThe Rate-Limiting Step of O2 Activation in the α-Ketoglutarate Oxygenase Factor Inhibiting Hypoxia Inducible Factor
Factor inhibiting HIF (FIH) is a cellular O2sensing enzyme, which hydroxylates the hypoxia inducible factor-1α. Previously reported inverse solvent kinetic isotope effects indicated that FIH limits its overall turnover through an O2 activation step (Hangasky, J. A., Saban, E., and Knapp, M. J. (2013) Biochemistry 52, 1594−1602). Here we characterize the rate-limiting step for O2 activation by F...
متن کاملHypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability.
Citrate is a critical metabolite required to support both mitochondrial bioenergetics and cytosolic macromolecular synthesis. When cells proliferate under normoxic conditions, glucose provides the acetyl-CoA that condenses with oxaloacetate to support citrate production. Tricarboxylic acid (TCA) cycle anaplerosis is maintained primarily by glutamine. Here we report that some hypoxic cells are a...
متن کاملCharacterization and application of the Fe(II) and α-ketoglutarate dependent hydroxylase FrbJ.
The Fe(II) and α-ketoglutarate-dependent hydroxylase FrbJ was previously demonstrated to utilize FR-900098 synthesizing a second phosphonate FR-33289. Here we assessed its ability to hydroxylate other possible substrates, generating a library of potential antimalarial compounds. Through a series of bioassays and in vitro experiments, we identified two new antimalarials.
متن کاملLoss of Nardilysin, a Mitochondrial Co-chaperone for α-Ketoglutarate Dehydrogenase, Promotes mTORC1 Activation and Neurodegeneration
We previously identified mutations in Nardilysin (dNrd1) in a forward genetic screen designed to isolate genes whose loss causes neurodegeneration in Drosophila photoreceptor neurons. Here we show that NRD1 is localized to mitochondria, where it recruits mitochondrial chaperones and assists in the folding of α-ketoglutarate dehydrogenase (OGDH), a rate-limiting enzyme in the Krebs cycle. Loss o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochemistry
سال: 2016
ISSN: 0006-2960,1520-4995
DOI: 10.1021/acs.biochem.5b01003